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The relation between stress and strain components for an elastic iso- 

tropic body in the region of small strains is considered when there 

exists a potential which is piecewise linear. 

It is assumed that a linear Hooke’s Law holds for uniaxial tension- 

compression and for pure shear, and that volume changes are proportional 

to the mean stress. The behavior of the model differs in general from 

the behavior of an elastic isotropic body obeying the linear theory of 

elasticity [ 1,2 1 . 

1. For determination of the relations between stress and strain for 

an elastic body we start with the expressions 

au 
%j = ac, (1.1) 

Here u . and 6 , . are the stress and strain components respectively, 

and Cl is t e “i pote:Cial of the strains. 

For isotropic bodies the potential U is a function of the invariants 

of the stress tensor 

u = u (0, 22, Z,) (1.2) 

where u is the first invariant of the stress tensor, 2, and E’3 are the 

respective second and third invariants of the stress deviator tensor. 

We assume that a linear relation exists between the mean stress u and 

the volume strain 6 
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u= 3K& 
s = 1/Z (s, + s, + sJ (K = const) (1.3) 

o = “3 (o, +o, +a*) 

(Here K is the volume modulus of compressibility.) 

In order for (1.3) to hold, one must set 

(I.4 

The relation between stresses and strains determined from (1.4) in 
accordance with (1.1) will satisfy relations (1.3). 

We assume that with a change in sign of the stress the reversed strain 
components likewise suffer only a change of sign. It follows that the 
function @ depends on the modulus 1 SC, 1 . 

In the field of principal stresses ul, u2, u3 the function @ is in- 
terpreted as the totality of cylindrical surfaces with equal values of 
a, the generators of which are parallel to the axes u1 = a2 = u3. 

We consider a deviator plane u1 + u2 + a3 = 0, on which U = Cp. The 
curves of intersection of the U-surfaces and the deviator plane we de- 
note by the term “potential curves”. 

If the value of the potential is determined for uniaxial tension- 
compression, then the possible nonconcave potential curves will lie be- 
tween the hexagons ABCDEF and AIBIC,D,EIF, (Fig. la). 

Fig. 1. 

If the value of the potential is determined from an experiment in 
pure shear, the mutual disposition of the hexagons is shown in Fig. lb. 

It is well known that the function Q is not completely determined 
from the results of simple tests (the connection between stresses and 
strains for tension-compression, pure shear, etc.) and so, generally 
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speaking, one may construct as many relations as desired between the 
components of stress and strain for an elastic isotropic body leading to 
a linear Hooke’ s Law for uniaxial tension-compression [ 3,4 1 . 

The linear relations of the generalized Hooke’s Law are obtained from 
the special assumption that Q= @(X2). The corresponding potential curve 
on Fig. 1 is represented by the circle. 

We now consider the relations given by the theory for an elastic iso- 
tropic body when the potential curves are represented by hexagons similar 
to the hexagon ~~C~~~ in Fig. 1. 

The surface of the function Cp in the principal stress field is piece- 
wise smooth; hence, a generalization of the determination of (1.1) is 
necessary. It follows from the relations (1.1) by the use of (1.3) and 
(1.4) that the components of the tensor of strain deviators will be 
orthogonal to the surface @ in the stress-strain field. In other words, 
the components 6 ii - 6 iie (6 ij = 1; 6 ij = 0, i f j) coincide with the 
normal to a surface which is tangent to QD at a given point. 

The surface ([, may be interpreted as a bending of both tangents to the 
plane. Particular points and lines of the surface @ are interpreted as 
the limits of smooth sequences. 

For continuous passage from a smooth potential surface to one which 
is piecewise smooth, we find that the potential surface of the strain 
tensor may take different values at certain points. If this singularity 
is represented by the tangents to the smooth surfaces 

a1 = 0, = . . . = CD, = 0 (1.5) 

then the set of components of the strain tensor may be presented in the 
form 

Since A, + A, f . . . A, = 1, Xk > 0, one obtains m - 1 possible strain 
components in the parametric family. Just as in the theory of plasticity 
IS-8 1 one has to rely on an additional condition applicable to the 
specific problem (edge, initial, or other condition) in order to deter- 

mine the state of strain completely. 

Upon multiplying relation (1.6) by dcrij , we obtain 
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It follows from (1.5) that d @I = d @3 = .., d a,, = d @, and so we 
find from (1.7) 

x Eijdcij = dU 
ij 

Relations analogous to (1.6) are obtained from the theory of the 
generalized plastic potential ES,6 1. 

2, We consider the relations for the theory of an elastic isotropic 
body (Fig. 1) with a piecewise linear potential ABCDEF. Evidently 
maximum freedom in the strain occurs at the peaks. Any arbitrarily 
directed strain may correspond to the peaks of the hexagon ABCDEF; or, 
in other words, an arbitrary state of strain may correspond to a state of 
stress with maxima on the given hexagon peaks. 

Considering the side AB (Fig. l), we shall have for it 

u = -& +Q US 6 = 01 - u2 (2.1) 

In accordance with (1.1) we obtain from (2.1) 

In the case of uniaxial tension-compression Hooke's Law holds by 
assumption: 

Ul = Eel, 42 = 43 = 0 (2.3) 

For (2.3) to be true, it follows from (2.2) and (1.3) that one must 
set 

fD = + (& - &) (a1 - 02)2 (2.4) 

By denoting l/G= (l/E - 1/9K), we write Expression (2.4) in the form 

(2.5) 

Expressions for the function Q, for the other sides of the hexagon 
ABCDEF (Fig. 1) may be written by analogy. 

Consider the relations corresponding to the peaks of the hexagon 
(Fig. 1). 'Ihe peak A is the point of intersection of the sides AB and 
AF. We have for these sides 

UAB = & + -,:,(m - cr2)2, 

(2.Q 
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We obtain for the peak A in accordance with (1.6) and (2.6) 

El--&== ;$ [hl (at - G.2) + a2 (ot - G3fl 

E2-&== - ;;- (a1 - 02) (a,+hz=3) (2.7) 

&3 - & = - sg (tsl - as) (hI>O, ?a>,01 

By taking into account that o 2 = u3 at the peak A, we rewrite (2.7) 
in the form 

T 
el-E==L=:;jC;, m-E-_-T 

h? rf 

E3--=---_ (2.8) 

(T -_ 61- 5;! = 61 - 33) 

It is apparent from (2.8) that Hooke’s Law (2.3) holds. We write down 
the initial conditions for the deviator components in the xyz-coordinate 
system. We suppose that the qz-axes make angles with the directions of 
the principal stresses designated by 1, 2, 3, the cosines of which are 
here tabulated. 

TABLE 

we 

From the relations 

0, = ml12 + 62rm2 +a3m2, . . * 

r w = mZtl2 +tmmmt ffT3mn2, . . . 

obtain at the peak A 

cr, = CT --$T+Tcos=0~, “~,v=Tcosfheos8z 

tsv = (T - $. T + T co9 Oa, % = T cos 0% cos 03 (2.9) 

oz = o - $ T + T cos2 0s, z,, = T cos 03 cos 01 
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Here el, 8,, d3 are the angles determining the direction of the 
principal stress al in the xyz-coordinate system. 

In particular, it follows from (2.9) that 

(u,--CT _t$T)(c$-a+ +-T)-&/=O 

PfJ -u +$T)(tr,--o +$3’) --z;*= 0 

@ - 0 +-y)(o, -u -+$T) -&= 0 

From (2.10) we find that 

(2.10) 

(2.11) 

Each radical in (2.11) requires a plus sign since T> 0. 

From the condition of isotropy, by asserting the coincidence of the 
principal directions of stress and strain following [7,l, we obtain 

From this we find after making use of (2.9), (2.10) and (2.11) 

Relations (2.13) may be obtained from Expressions (2.10) by the theory 
of the generalized elastic potential, 



1346 

To the five 
of equilibrium 

D.D. lvlev 

equalities in (2.13) there must be added three equations 

and, in addition, the relations (1.3). 

The system of nine equations (2.131, (2.14) and (1.3) in the six 
stress components and three displacement components determines the be- 
havior of the elastic model under consideration. 

The original system of equations may be presented in another form. By 
substitution of Expressions (2.9) into Equation (2.14) we get 

_f2.. - I’ sin61 ‘cos 61 ?I 
3X i 

~+c*se2+ +cose3~)- 

- I’COSI~~ sirlfll~-+5inBn~+sir10s~j- 
( 

(2.15) 

1 aT --- 
3 dx 

+coso1 Jgcos81 +J%os&+ g-coso&-0, .a* 
i ay I-- 

To the three equations (2.15) one must add the condition 

cos2 81 -j- cos2 82 + cos2 63 = 1 

We rewrite Equations (2.13) in the form 

$-+;(&$)~~~i_-_($+ 

=f(!&+;;)c~+~+$\~+ 

aw cos 03 
azcos ) 
a20 cos 03 
dy CGig ) 
+g==++ 

(2.16) 

(2.171 

T 
3c 

‘Ihe system of equations (2.15), (2.17) and 
CI, T, PI, B,, 8,, u, v and rv. 

In the case of correspondence of the state 
sides (Fig. I) we will have 

4 
rmilx - 3G ---z mnx 

(1.3) relates the ~0~s 

of stress with the hexagon 

(2.18) 

where r and y.,, are the respective maximum shear stress and strain. 
For thi?iodel of an isotropic elastic body the shear modulus is 314 G. 

If two of the principal stresses are equal, the relation 
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+- (7-1 + Tz) = + ‘T,,, 

% 
c B 

0 

@ 

holds, where y1 and yz are the 
principal shear strains. 

A br 
The Cartesian expressions corre- 

sponding to the hexagon sides are 
cumbersome and therefore have been 

F omitted. 

Fig. 2. 3. In the case of torsion ol= -u2, 

03 =O*i7=6 = 0; consequently the 
third invariant of the stress deviator tensor is zero. 

For torsion, the stress-strain relations for an elastic isotropic 
body lead to generalized Hooke’s Law for small strains for any potential 
function (1.1) if conditions (1.3) and (2.3) are accepted as valid. 

Consider the case of plane strain. We suppose that 

w = E, = Es = axr = Eyz = z,, = q, = 0 

and that the remaining components depend only on the xy-coordinates, 

‘Ihe state of stress corresponds to the boundary AB (Fig. 1). We find 
from (2.2) that Z = 0; indeed, for plane strain the given elastic 
material behaves as though it were incompressible and independent of the 
modulus K. 

It is easy to convince oneself that the remaining relations essenti- 

ally coincide with those of a generalized Hooke’s Law I i,2 I for an in- 
compressible body in plane strain 

8. We proceed to the case of plane stress. We assume that 

(TQ = a* = z,, = rrrz = E,. = Eyt = 0 (4.1) 

All remsining components depend on the q-coordinates. Figure 2 shows 
a section of a certain surface of equsl levels of Q, in the plane u3 = 0. 
Evidently, we must differentiate between the cases where the state cor- 
responds to the sides AB, BC, DE) EF, or to the sides CD, FA . 

We consider first the side AB (Fig. 2). The sides CB, DE and EF 
are considered to be completely analogous. 
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Obviously, to derive the law of deformation one must start with the 
expression 

We find from (4.2) that 

El - E = -&Ul - c3)r E2 - E = 0, E3 - & = - &((r, 

Substitution of u3 = 0 into (4.3) gives 

(4.2) 

- 03) (4.3) 

(4.4) 

The principal stresses aI and 59 (oI > 0~1 

the principal strains (r 1 and c2 coincide with 
fore we have 

lie in the xy-plane and 
them in direction; there- 

(4.5) 

It is known that 

We find, from (4.4) and (4.51, that 

vbL2 - EJ2 + 4sq2 = &[ Co, + “y) + VT% - q/J2 + 4%/q 

8, f Ey - VC@, - e$ + 4%; = T$ (% + $1 
(4.7) 

Supplementing the two equations of equilibrium and the condition 
(1.3) by the three relations (4.5) and (4.7)‘ we obtain a system of six 
equations in the six unknowns uX, B 

Y' * xy' 
u, v and W. 

The system of 
stitutions 

0, 

The condition 
takes the form 

equations may be linearized with the aid of the sub- 

=po fX cos 26, 

-3 
-- za- x cos 28, 

r X?i = K sin 28, 

(4.5) is satisfied 

12Gq = 3~ +2x, 

8, = m + q cos 20 

Ey = m - q cos 20 (4-S) 

E XY = q sin 28 

identically and condition (4.7) 

6 
m-q== w-9 



Bahowior of an itotropic solid 1349 

Substitution of Expressions (4.8) into the equations of equilibrium 
and compatibility gives a system of quasilinear equations in u, K, m, q 

and 8. 

In the case where the state of stress corresponds to the cut DC or 
to AF, one must start with Expression (4.2) for the potential. It is 
easily shown that in this case the relations 

Ex - E,=&-(Jg). 2t Exy = 3G ry 

sz = $(s, + sJc or +oy=+K(s, f&J 
(4.10) 

hold. 

The case of the axially sysnnetric problem is completely analogous. 
‘Ihe relations may be obtained as a special case of the general problem. 

5. We consider the case of a thin ring-shaped plate stretched by uni- 
formly distributed forces applied around the edge (Fig. 3). Denote the 
inside radius by a, the outside radius by b, and the load intensity by p. 

We set uL = ag, ~7~ = up. Since ue > up > 0 everywhere in the plate, 
the state of stress corresponds to the side AB (Fig. 2). 

We limit ourselves, for simplicity, to the case of incompressible 
material. We obtain from (4.4) 

Qe 
~e=~’ Ep=O, Ez=-$ 

It is known that 

du 
.+-34, 

dw 
.Ep = alp 9 

P 
6, = x 

Here u and v are the displacements along the axes p and Z. 

‘I&e single equation of equilibrium is written in the form 

Fig. 3. 

It is easy to obtain 

Q = P61ncPla) 
P P In (6 / a) ’ 

50 = 
pb 

P In (6 ! a) 

E, = 0, &(J = 
p6 

- % = 3Cp in (6 / a) 

pb u = 3G In (b/a) ’ 
pbz 

w = ~G,J In (6 / a) 

(5.2) 

(5.3) 
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We present for comparison the solution of the same problem 
by using the linear relations of a generalized Hooke’s Law [ 1 

obtained 
I: 

pb2 
( 

2 a2 

'6 = 2G(b2_a2) 3 > 

pb2 -- 
p2 9 ” = 2G (62 _ a2) (+ + f) (5.4) 

pb2 
E; = - 3G pi__ a%) ’ 

pb2 
u = 2C(b”--aa”) 

pb2z 

w = - 3G (62 - a2) 

We note that the stresses are rather close, the largest difference 
being in the displacements and strains. 

6. Evidently, different consistent models of an elastic isotropic 
body may be assumed, which through experiments on uniaxial tension- 
compression and pure shear lead to linear relations between stresses and 
strains. 

The model considered is one of the possible ones. The use of this or 
some other model is connected with the degree of correspondence between 
the theoretical results and the experimental data, and with what is no 
less important, the mathematical simplicity of the original equations. 

It is possible that deviations of the behavior of an ideal elastic 
body from that of an elastic Hookean body in the region of small strains 
may be accounted for by passing to some other potential surface; never- 
theless, the Hooke model leads unquestionably with the greatest simplicity 
and exactness to the well-studied linear equations of elliptic type. 

We note also that in the light of Hencky’s interpretation 18 1 , the 
Mises plasticity condition as a certain energy of elastic shape change 
does not have exceptional value. For example, for certain conditions the 
energy of elastic shape change coincides with the plasticity condition 
of Tresca. 

Analogously, for any given plasticity condition there may be assigned 
a model of an elastic isotropic body, for which the expression for energy 
of elastic shape change coincides under a certain interpretation with the 
given plasticity condition. 

‘Ihe author takes this opportunity to express his thanks to V.V. 
Novozhilov and to L.I. Sedov for valuable comnents. 
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